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In this paper, we study the dynamics of small, spherical, rigid particles in a spatially pe- 
riodic array of Stuart vortices given by a steady-state solution to the two-dimensional 
incompressible Euler equation. In the limiting case of dominant viscous drag forces, 
the motion of the particles is studied analytically by using a perturbation scheme. 
This approach consists of the analysis of the leading-order term in the expansion 
of the ‘particle path function’ @, which is equal to the stream function evaluated 
at the instantaneous particle position. It is shown that heavy particles which re- 
main suspended against gravity all move in a periodic asymptotic trajectory located 
above the vortices, while buoyant particles may be trapped by the stable equilibrium 
points located within the vortices. In addition, a linear map for @ is derived to 
describe the short-term evolution of particles moving near the boundary of a vortex. 
Next, the assumption of dominant viscous drag forces is relaxed, and linear stability 
analyses are carried out to investigate the equilibrium points of the five-parameter 
dynamical system governing the motion of the particles. The five parameters are the 
free-stream Reynolds number, the Stokes number, the fluid-to-particle mass density 
ratio, the distribution of vorticity in the flow, and a gravitational parameter. For 
heavy particles, the equilibrium points, when they exist, are found to be unstable. In 
the case of buoyant particles, a pair of stable and unstable equilibrium points exist 
simultaneously, and undergo a saddle-node bifurcation when a certain parameter of 
the dynamical system is varied. Finally, a computational study is also carried out 
by integrating the dynamical system numerically. It is found that the analytical and 
computational results are in agreement, provided the viscous drag forces are large. 
The computational study covers a more general regime in which the viscous drag 
forces are not necessarily dominant, and the effects of the various parametric inputs 
on the dynamics of buoyant particles are investigated. 

1. Introduction 
The motion of bubbles, drops, and solid particles in fluid flows is a widely encoun- 

tered phenomenon and has important implications in many technological applications. 
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In many instances, the fluid medium carrying the particles (i.e. bubbles, drops, or 
solid particles) is in a state of motion involving large-scale vortical structures, and the 
purpose of this paper is to elucidate the dynamics of particles in a class of spatially 
periodic vortical flows. Specifically, we will study the motion of small, spherical, 
rigid particles in a periodic array of vortices given by Stuart’s (1967) solution to 
the two-dimensional, steady-state, incompressible Euler equation. In this paper, we 
assume that the size of the particles and their concentration are sufficiently small so 
that their mutual interactions as well as their effects on the base flow can be neglected. 

The motion of a small spherical particle in an unsteady, non-uniform flow field u 
is governed by the momentum equation (see Maxey & Riley 1983; Auton, Hunt & 
Prud’homme 1988) 
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together with 

where x p  and V are the particle’s position and velocity, respectively. In (l.l), d is 
the particle diameter, p is the density, g is the gravitational acceleration, and the 
subscripts F and P refer to the fluid and particle, respectively. The five terms on the 
right-hand side are the forces on the particle contributed by gravity, the acceleration 
of the fluid particle, viscous drag, lift, and the Basset history. The coefficient of 0.5 
in the left-hand side accounts for the effects of the added mass on an accelerating 
sphere. The three forces, Fd, F,, and Fh are functions of the velocity of the particle 
relative to the fluid velocity. The viscous drag takes the form of 

Fd = 37CCdVP~fd (a - v) , (1.3) 

where v is the fluid kinematic viscosity, and fd is a coefficient correcting for the effects 
of non-zero Reynolds number Rep = Iu - VI d/v. Based on the study of Saffman 
(1965), which is valid for Rep << 1 (Stokes regime), and the work of Auton et al. 
(1988), which is applicable to inviscid flows (Rep + a), we can write the lift force as 

1.615pFv4d2 sign (+)n, Rep << 1 

-d3p, (u - v) X a, Rep >> 1. 
12 

F F {  .n ( 1.4) 

In (1.4), o is the vorticity of the flow field. We note that the lift force for Rep << 1 
given above is valid only for two-dimensional flows in the (x,y)-plane with 

au, au, 
aY ax 4 = (u, - V,)2 - - (u,  - V,) - - (u, - V,) (uY - V y )  (2 - 2) (1.5) 

and 

In (1.6), ex and ey are unit vectors in the x- and y-directions, respectively. According 
to a recent work of McLaughlin (1991), the original formula of Saffman (1965) and, 
therefore, its counterpart in (1.4) overpredict the actual lift force. Mei (1992) has 
recently obtained a correlation for the lift force for Rep < 100, using the result of 
Saffman (1965) and the numerical findings of Dandy & Dwyer (1990). The discrepancy 
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between Mei’s (1992) correlation and the formula of Auton et al. (1988), which is 
valid only for the case of Rep + 00, is less than 25% at Rep = 100. The Basset 
history force is given by Maxey & Riley (1983) for the Stokes regime (Rep -+ 0) as 

We note here that the validity of (1.7) has recently been brought into question by the 
works of Reeks & McKee (1984) and Mei, Lawrence & Adrian (1991). It is pointed 
out by Mei et al. (1991) that (1.7) is applicable only in the Stokes regime, in which 
it is not even uniformly valid over the time domain; the kernel in (1.7) behaves like 
(t - o)-i only for short time, but decays much faster for long time. For simplicity, 
the lift force and the history term will be neglected in this paper. Thus, unless stated 
otherwise, we include only the effects of particle inertia, added mass, gravity, fluid 
acceleration, and the viscous drag in the momentum equation. 

Equation (l . l) ,  or its simplified version, has been applied to numerous studies of 
particles in non-uniform fluid flows. Chein & Chung (1987, 1988) retain only the 
viscous drag term in their studies of heavy particles in plane free shear layers. In the 
first paper, emphasis is placed on the effects of ‘vortex pairing’ on the dynamics of 
the particles, while the second paper covers a wider range of the vortex street. The 
same simplified version of (1.1) is also employed by Chung & Troutt (1988) in their 
study of heavy particles in an axisymmetric jet. The numerical results of these studies 
essentially show the same phenomenon: for particles with a small Stokes number (or, 
equivalently, a small diameter), their lateral dispersion by the vortices increases with 
increasing Stokes number (or diameter) until a maximum is reached, after which the 
dispersion tappers off as the Stokes number is increased. This trend of dispersion 
versus the Stokes number has also been observed in an earlier study by Crowe, Gore 
& Troutt (1985). In their study, the two-dimensional free shear layer is modelled with 
a row of Stuart vortices; again, they retain the viscous drag force only. 

A more detailed study of the motion of heavy particles in the Stuart vortex 
flow is presented in a paper by Gaiian-Calvo & Lasheras (1991), who retain the 
viscous drag force and the gravity term in the momentum equation. They find 
that depending on the initial conditions, particles may either settle due to the pull 
of gravity or remain indefinitely suspended in open trajectories above the vortices. 
When suspension occurs, the particles either move in periodic, quasi-periodic, or 
chaotic trajectories. In the chaotic regime, suspended particles become ‘fluidized’ in 
a layer of finite thickness located above the vortices. Furthermore, for suspended 
particles with a small diameter, they all asymptotically collect along a single periodic 
trajectory. However, as the diameter increases, this periodic trajectory bifurcates into 
two quasi-periodic orbits, which in turn evolve in a cascade of bifurcations resulting in 
chaotic trajectories; beyond a certain critical diameter, no particle can be suspended. 
In some sense, then, this finding of Gaiian-Calvo & Lasheras (1991) is qualitatively 
similar to the relation between particle dispersion and the Stokes number observed 
by Crowe et al. (1985), Chein & Chung (1987, 1988), and Chung & Troutt (1988). 
In a recent study (Tio, Gafih-Calvo & Lasheras 1993a), the work of Gafian-Calvo 
& Lasheras (1991) is extended to include in (1.1) the forces contributed by the fluid 
acceleration and the lift of Auton et al. (1988). A consequence of the inclusion of 
the fluid-acceleration term, in addition to the gravitational and viscous drag forces, 
is to greatly enrich the dynamics of the particles. Not only can they be suspended 
above the vortices, but particles denser than the fluid can also be suspended below 
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the vortices or be suspended intermittently above and below the vortices; in addition, 
closed particle orbits are also observed. While only a relatively small portion of the 
result of Ti0 et al. (1993~) is obtained by taking into account the lift force in (Ll), a 
conjecture can nevertheless be made that its inclusion does not qualitatively alter the 
topography of open-trajectory suspensions. 

In the case of buoyant particles in the Stuart vortex flow, we do not find any 
suspension of particles in open trajectories above or below the vortices. Nor can 
we find any closed particle trajectory. As will be seen later, a buoyant particle or 
a bubble, for that matter, either escapes (due to its buoyancy), or is captured by a 
vortex and remains trapped at the equilibrium point near the centre of that vortex. 

The entrapment of bubbles or other buoyant particles by a vortex has also been 
observed in other types of vortical flows. Maxey (1987), in a numerical study of 
particles as well as bubbles in a Langmuir cellular flow field, finds that all the bubbles 
released in the flow are trapped by the equilibrium points in the flow field if the 
bubble rise speed in still fluid, Q, is sufficiently small. As Q is increased, some of 
the bubbles escape from captivity, rising through the upflow regions of the flow field. 
When Q is increased beyond a critical value, the equilibrium points no longer exist, 
and all the bubbles accumulate and rise along asymptotic paths. The equation used 
by Maxey (1987), however, is based on the assumption of a Stokes-flow regime, 
and is slightly different from (1.1). The entrapment of buoyant particles by a stable 
equilibrium point has also been observed numerically by Crisanti et al. (1990). In 
their study, the selected flow field is similar to the Langmuir cellular flow studied by 
Maxey (1987). In a numerical simulation of the trajectories of bubbles released below 
a line vortex with a horizontal axis, Thomas et al. (1983, 1984) find that all bubbles 
passing the vortex within a critical distance from the centre are trapped by the vortex. 
Furthermore, this critical distance increases with the strength of the vortex. In an 
asymptotic analysis carried out by Nielsen (1984), it is shown that buoyant particles 
may be trapped by a stable equilibrium point of the flow field generated by a vortex 
of solid-body rotation. 

In this paper, we first develop an approximate analytical technique to study the 
dynamics of particles in a Stuart vortex flow. This approximate analysis, which is 
based on the assumption that viscous drag is the dominant force acting on a particle, 
is valid for bubbles, drops, and solid particles. Furthermore, it reveals that there are, 
generally speaking, two mechanisms by which particles are suspended against gravity 
in the mixing region of the flow. The first mechanism, by which particles heavier 
than the fluid are suspended in motion along open trajectories above the vortices, has 
been observed in the numerical studies of Gaiiin-Calvo & Lasheras (1991) and Ti0 et 
al. (19934. For buoyant particles, however, the suspension mechanism is completely 
different from that of heavy particles. Owing to the existence of a stable equilibrium 
point inside each vortex for buoyant particles, the suspension mechanism consists of 
particle entrapment by the vortices so that a buoyant particle which does not escape 
from a vortex is captured by the equilibrium point located inside the vortex. To test 
the validity of the prediction of the approximate analytical model that buoyant and 
heavy particles are suspended in the flow by two different mechanisms, we next study 
the linear stability of the fixed points of the dynamical system governing the motion 
of the particles. Here, we relax the assumption of dominant viscous drag, and find 
that the results are consistent with the asymptotic model. Finally, we carry out a 
computational study by integrating numerically the dynamical system, and compare 
the results with the asymptotic model to ascertain its accuracy. 

K.-K.  Tio, A. Liiih, J .  C .  Lasherus and A. M .  Gaiian-Calvo 
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FIGURE 1. A Stuart vortex and streamlines for k = 0.25. Note that gravity points in the negative 
y-direction, and that x and y are dimensionless. 

2. Problem formulation 

(Stuart 1967). The stream function Y associated with the flow is given by 
The flow field selected for our study consists of a periodic array of Stuart vortices 

Y = %In 2.n [cosh (F) - kcos (T)] , 

which satisfies the inviscid vorticity equation V2Y = w ( Y ) .  The vorticity takes the 
form of 

271 u, 
A (2.2) w (‘y) = - ( 1  - k2) e4ny/AUm. 

In (2.1) and (2.2), U ,  is the free-stream velocity, A is the distance between two 
contiguous vortices, and k is a parameter which determines the distribution of 
vorticity. For k = 0 (2.1) reduces to a tanhy shear layer, while k = 1 corresponds 
to a row of point vortices. In figure 1, we show one of the vortices together with 
the streamlines. In this paper, the terms ‘cat’s eye’ and ‘Stuart vortex’ are used 
interchangeably. The fluid velocity u = (u,,uy) is given by 

ay sinh (27cylA) 
d y  

urn, u, = -- = - 
cosh (27cylA) - kcos ( 2 x x / 1 )  

k sin (271xlA) 
- UW. u y = - -  cosh (271ylA) - kcos (271xlA) 

alp 

ax  
Introducing the dimensionless quantities 

* x  x =- 
A/271 ’ (2.5) 

1 
t’ = 

A/2.n u, ’ 
P F  

& =  
PP + 0 . 5 ~ ~  ’ 
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(2.9) 
. 9  g = -  

we obtain the dimensionless counterpart of (1.1) and (1.2), the lift and history forces 
being excluded, as 

g' 

where 
1 8 ~ v ; l  A = -  

271 U,d ' 

(2.10) 

(2.1 1) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

The parameter A as defined in (2.14) is the inverse of the Stokes number, which is 
equal to the ratio of the particle relaxation time (d2/18sv) to the fluid residence time 
(A/271Um), and is a measure of how under the effect of viscosity a particle responds 
to a given fluctuation in the flow field. The parameter B is a measure of the relative 
strength of gravitational effects, and is similar to the inverse of the Froude number. 
It should be noted from (2.13) that we have chosen gravity to point in the direction 
opposite to the y-axis. The density ratio has the range of 0 < E < 2; for heavy 
particles E < 2/3, for buoyant particles E > 2/3, and E = 2 for bubbles. The drag 
coefficient f d  can be calculated by making use of the correlations given by Clift, 
Grace & Weber (1978) for rigid particles. In the case of bubbles, Oliver & Chung 
(1987) have recently proposed a correlation valid for the Stokes regime and beyond. 
These correlations are given in terms of the Reynolds number of the particle based 
on the relative velocity between the particle and the fluid: 

I u -  V l d  
Rep = 

V 
(2.16) 

This instantaneous particle Reynolds number is related to the free-stream Reynolds 
number, Re = U,d/v ,  through the formula 

Rep = Iu* - V'I Re. (2.17) 

In our computer program, we assume the particles to be rigid, and include all the 
correlations given by Clift et al. (1978) for fd valid over different ranges of Rep. 
However, all the numerical results presented in this paper correspond to the range of 
0 < Rep < 200, in which case the single correlation of 

(2.18) 

is applicable with an error of less than 2%. In (2.18), the first term on the right-hand 
side corresponds to the Stokes drag while the second term accounts for the correction 
of non-zero Rep. The dimensionless fluid velocity u' = (u:,u;) and vorticity cc)' are 

0 82-0.0510gloRep 
fd = 1 +0.1315Re; 
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given by 
sinh y’ u, = - 

cash y’ - k cos X’ ’ 
k sin x* 

u =  
cash y’ - k cos X’ ’ 

1 - k 2  
[cosh y’ - k cos x*]’ ’ 

w =  

(2.19) 

(2.20) 

(2.21) 

It should be observed from the system of equations (2.10)-(2.13) that the dynamics 
of particles is governed by a set of five parameters: the vorticity-distribution parameter 
k, the free-stream Reynolds number Re, the parameter A, the gravitational parameter 
B, and the density ratio E. For convenience, we will drop the asterisks from now on. 
Unless stated otherwise, we will deal with dimensionless quantities only. 

3. Analysis of dominant viscous drag 
For small solid particles, drops, or bubbles moving in a liquid medium, E - 0 (1) 

and ( d / l )  << 1. Thus, with a moderate free-stream Reynolds number Re, the 
parameter A is usually a large number, and the viscous drag is the dominant force 
acting on the particles. As a result, the velocity of the particles is almost equal to that 
of the fluid and, due to a moderate Re, the Reynolds number Rep becomes much 
smaller than unity. In what follows, we assume that fd = 1 (Stokes drag) and that 
the product C = Afd is a constant much greater than unity, and under this condition 
we analyse the evolution of the dynamics of the particles. 

In this special case of y z 1/C << 1, we see that the system of (2.10)-(2.13) together 
with the initial conditions 

X P ( t  = 0) = X P O ,  Y P  (t = 0) = YPO, (3.1) 

V,(t = 0) = v,, Vy(t = 0) = vy0, ( 3 4  
constitute a singularly perturbed initial value problem, y being the small parameter. 
In the ‘outer region’ of the time domain, (2.10)-(2.13) reduce to the system of 

= v,, dy, 
dt 

v, = u, + y -- + ;&Urn  vu, , [ d: 1 
v, = uy + y -35 + ;Eu. vu, + ( { E  - 1) B , [ dt 1 

which consists of two ordinary differential equations and two algebraic equations so 
that the initial conditions given by (3.1) and (3.2) cannot, in general, be satisfied 
completely. In the ‘inner region’ characterized by t - 0 (y), we introduce the timescale 
T given by 

I L  
t=--0(1), 

Y (3.7) 
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and rescale (2.10)-(2.13) to obtain 
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d VX 
dt = (u, - VX) + y [ ; E l l .  vu,] , (3.10) 

5 = (u, - v,) + y [ ; E l l .  vu, + (;& - 1) B ]  . (3.11) 

Then, the complete solution of the original initial value problem consists of integrating 
(3.8)-(3.11) subject to the initial conditions given by (3.1) and (3.2), integrating (3.3) 
and (3.4), and carrying out an asymptotic matching in the time domain where the 
‘inner’ and ‘outer’ solutions overlap. This asymptotic matching is needed to calculate 
the constants in the integrals of (3.3) and (3.4). In this paper, we are interested in the 
‘outer region’ only. However, before we begin our analysis, we shall present a brief 
discussion on the ‘inner region’. 

In the ‘inner region’, the leading-order approximation to the solution of (3.8)-(3.11) 
and (3.1)-(3.2) can be easily obtained as 

(3.12) 

dt 

XP = XPO + 0 (Y) Y 

YP = YPO + 0 (Y) Y (3.13) 

V, = ud - (uxo - vxo)e’ + 0 (71, (3.14) 

V, = uyo - (ufl - vy0) e-’ + o (y) , (3.15) 
where (ux0, uyo) is the fluid velocity evaluated at the initial particle position (xp0, ypo). 
Thus, the position of the particle changes very slowly, but its velocity experiences a 
rapid change with time ? and exponentially approaches ( u , ~ ,  u , ~ ) .  

Beyond the ‘inner region’, the viscous drag acting on a particle has forced it to move 
with the local fluid velocity, except for a small deviation of order y [see (3.5) and (3.6)]. 
In other words, the trajectory of the particle is almost a streamline characterized by a 
constant value of Y .  Owing to the perturbative terms of 0 ( y )  in (3.5) and (3.6),  which 
will be examined in detail later, the particle cannot move exactly along a streamline. 
Instead, it slowly drifts away from it. To examine the drift of the particle, we first 
introduce the ‘particle path function’ @, which is defined by 

@ = (XP (4 ,YP (0) .  (3.16) 

That is, the ‘particle path function’ is simply the stream function evaluated at the 
instantaneous position of the particle along its trajectory. Since the particle drifts 
slowly from a streamline, CP changes only by a small amount of order y during a 
time period of A t  - 0 (1) but its change will be significant in a time interval of order 
l / y .  Thus, the dynamics of the particle actually constitute a multiple-scale problem 
involving the fast time t and the slow-time variable z = y t .  In this paper, we are 
interested in the short-term evolution of the particle and, thus, deal with the fast 
variable t only. From (3.16), we obtain the rate of change of @ as 

d@ aY dxp 8Y dyp 
dt 8x1, dt 8y I p  dt 

- + - - = uyvx -uxvy,  - - -  (3.17) 
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where the fluid velocity, u, is evaluated at the instantaneous position of the particle. 
The velocity of the particle can be expanded asymptotically as 

v = u (XP) + y v(l) (t, X P )  + 0 ( y 2 )  , (3.18) 

where V(') = (V:'), VT)) are unknowns to be determined. Substituting (3.18) and its 
derivative, 

(3.19) 
a v(1) 

- = u . v u + y  u.vv"'+ v'l'*vu+- 
at 

dV 
dt 

into the system of (2.12)-(2.13), we then obtain 

~ ( l )  = ( S E  - 1) [u . vu + ~ e , ]  . (3.20) 
Had the Basset history and the Saffman lift force been included in (2.12)-(2.13), their 
effects would first appear at O(y:). That is, the right-hand side of (3.18) would consist 
of an additional term of the form yi V ; ) ,  where 

The quantity K in (3.21) is given by 

Thus, in the special case of dominant viscous drag, the lift and history forces can be 
neglected in comparison with the others acting on the particle. With the velocity of 
the particle given by the expansion 

v = u + y  ( S E -  1) [ u . ~ u + ~ e , ]  + o ( y 2 ) ,  (3.23) 
we then obtain from (3.17) the rate of change of Q, as 

- = [(u * VU,) uy - (u * vu,) u, - Bu,] ( 5 E  - 1) y + 0 ( 7 2 )  . (3.24) 
dQ, 
dt 

To further investigate the motion of the particle, an integration of (3.24) is required. 
Before we do that, however, we present here some comments pertaining to (3.23). 
Basically, it states that, after the initial transient, the velocity of the particle is equal 
to the local fluid velocity, except for a small perturbation which results from the 
density difference between the particle and the fluid. The first term in the order-y 
perturbation is due to the fact that a particle with a different mass density (inertia) 
cannot accelerate as much as the fluid; the second term is due to gravity, the quantity 
y ( $ E  - 1) B being the terminal risinglsettling speed of the particle in quiescent fluid. 
An expression similar to (3.23) has been proposed by Stommel (1949), who ignores 
the effect of particle inertia and the advective acceleration of the fluid. In this case, 
the velocity of the particle can be written as 

ayp ayP B 
aY ax A 

v=-- ex + -ey = u + ( S E  - 1) -ey, 

where Y p  is the 'particle stream function' given by 

(3.25) 

(3.26) 
B 

Yp (x, y )  = Y (x, y )  + ( S E  - 1) AX. 
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Particle trajectories are then represented by the contours of Y P .  For the Langmuir 
cellular flow considered by Stommel (1949), which is composed of spatially periodic 
convection rolls, these contours consist of ’open and closed curves. Thus, heavy 
particles may be suspended against gravity in motion along closed trajectories. In 
reality, however, particles with a density different from the fluid cannot move in closed 
orbits due to the u . Vu term in (3.23); this will be clearly seen from the analysis to 
be carried out below. The absence of particle retention within a convection roll has 
been reported by Simon & Pomeau (1991), who carry out an experimental study of 
cellular flows similar to Bhnard convection. To explain their observation that all heavy 
particles sink toward the bottom of the liquid layer, they first invoke (3.25). However, 
they do not identify particle inertia and fluid acceleration [the u . Vu term in (3.23)] 
as an agent which prevents the retention of particles by the convection rolls. Instead, 
they argue that molecular diffusion and small-scale fluctuations in the flow drive the 
particles which would otherwise be suspended for ever in closed orbits toward the 
lower hyperbolic points of Yp, from which they move down and reach the bottom of 
the liquid layer. Equation (3.25) has also been used by Manton (1974) and Nielsen 
(1984) as the zeroth-order solution in their asymptotic analyses of particle motion in 
fluid flows generated by one vortex. For the first-order correction, Manton (1974) 
then introduces the effect of small particle inertia while Nielsen (1984) considers the 
effect of fluid acceleration. 

Returning to our analysis, an integration of (3.24) will now be carried out. As 
all the terms in the right-hand side are evaluated at the instantaneous position of 
the particle, this integration will thus involve the evaluation of a line integral along 
the trajectory of the particle. Since to the first approximation the velocity of the 
particle is equal to the fluid velocity [see (3.23)], i.e. the trajectory of the particle is 
a streamline with perturbations occurring at O(y)  and higher, we can perform the 
integration of (3.24) along the streamline which passes through the position of the 
particle at the begining of the integration, provided the time interval of integration is 
much smaller than l / y .  Note, however, that by integrating along a streamline instead 
of the trajectory of the particle, we can include only the leading term in the right-hand 
side of (3.24) since the incorporation of the higher-order terms would constitute a 
violation of the leading-order approximation. For convenience, we have chosen the 
integration period T as follows. For a particle outside the cat’s eyes, the period T 
corresponds to the integration along a streamline over the entire horizontal span of a 
cat’s eye; on the other hand, if the particle is inside a cat’s eye, we integrate along half 
of a (closed) streamline from the rightmost to the leftmost positions, or vice versa, 
during the period T .  

Denoting the change in @ during one period T as A @ ,  we thus have the following 
leading-order expression : 

A@ = ( : E  - 1) 7 [-9 (@) + I39 (@)I ,  (3.27) 

where 

pt=to+T 

k ( k  sin2 x cosh y + cos x sinh2 y )  
(cosh y - k cos x ) ~  

dt, =J t=to 
(3.28) 
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and 

t=fg+T 

u, dt. s S(@) = - 
t=to 

(3.29) 

Keeping in mind the argument in the last paragraph, it is understood that the integrals 
in (3.28) and (3.29) are evaluated along a streamline having the stream function 
Y equal to @. For an open streamline, the integration limits (t = to,t = to + T )  
correspond to (x = --a, x = n) or (x = n,x = -n) for a particle moving below or 
above the cat’s eyes, respectively. If the particle is moving inside a cat’s eye, we 
integrate from x = x,, to x = -x,,, or vice versa, where xmax > 0 is the right 
intersection between the streamline and the x-axis. Physically, the meaning of (3.27) 
is as follows. Since the viscous drag is the dominant force acting on a particle, its 
trajectory, after the initial transient period of order y ,  is a streamline except for a 
small perturbation. This perturbation, the magnitude of which after a period T is 
of order y ,  is the combined effects of the gravitational force acting on the particle 
and its inertia, and results from the density difference between the particle and the 
fluid. For a neutrally buoyant particle, E = 2/3, and A@ = 0. The factor ( i e  - 1)  
has different signs for buoyant and heavy particles, and accounts for the fact that 
the effects of gravity and particle inertia on a buoyant particle are opposite to those 
on a heavy particle. For instance, gravity tends to deviate a buoyant particle from a 
streamline in the upward direction while it tends to pull a heavy particle downward 
away from the streamline. Owing to the inertial effects, a particle with a density 
different from the fluid cannot follow a curved streamline exactly. Thus, the function 
F accounts for the inertial-effect correction over the leading-order approximation of 
particle path being a streamline. Notice that 9 (@) corrects for the cumulative effects 
of the inertial forces, u * Vu, and u + Vu,, over the horizontal and vertical spans of the 
streamline segment, respectively. Moreover, since the curvature of the streamlines is, 
on average, in the direction of decreasing Y (see figure l), and since a heavy particle 
cannot turn as much as a fluid element due to its greater inertia, we can expect that 
F(@) is a positive quantity so that it has a positive contribution to A @  for heavy 
particles. This is indeed the case, as is confirmed by the 9-4 plot in figure 2. 

While (3.27) is convenient for the calculation of the change in @ over one or a 
few periods, it may not be so if we are interested in the change in @ over a large 
number of periods. For the long-time evolution of @, we can derive from (3.27) the 
approximate formula 

(3.30) 

where z = yt is the slow-time independent variable. In this paper, we are interested 
in the short-term evolution of @ only. Equation (3.30) and the other aspects of the 
long-term evolution of @ will be studied elsewhere. 

To evaluate the integrals in (3.28) and (3.29), we first note that 

Substituting (3.31) into (3.28), we then obtain 

k sin2 x cosh y + cos x sinh’ y 
sinh y 

dx 9 (@) = 2ke-2@ 

(3.31) 

(3.32) 
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FIGURE 2. The function .F (@) with parameter k = 0.25,0.50. The symbol denotes 
the boundary of a cat’s eye. 

with 

Equation (3.32) is valid for @ 2 Y,,, where Ycr is the stream function at the separatrix 
(i.e. boundary) of a cat’s eye and is given by 

(3.34) 

cosh y = e@ + k cos x, y > 0. (3.33) 

YCr = In (1 + k). 
For particles inside a cat’s eye, @ < Y,,, we have 

xmx k sin’ x cosh y + cos x sinh’ y 
dx (3.35) 

sinh y 
F (@) = 2keP2@ 1 

with 
1 -e@ 

cosx,,, = - k ’  (3.36) 

and y given by (3.33). Note that 9 (@) is independent of whether a particle is moving 
above or below the x-axis, reflecting the fact that the streamlines are symmetric with 
respect to this axis (see figure 1).  From (3.29), we obtain 

2xmux sign ( Y )  if @ < Y,, 

if @ 2 Ycr 
(3.37) i 271 sign (y) 

a(@) = 

with x,,, as given in (3.36). Thus, Y (@) is positive for a particle which is located 
above the x-axis at the begining of the period T ,  and is negative if the particle is 
initially below the x-axis. This antisymmetric behaviour of S ( @ )  follows from the 
fact that gravity is unidirectional. For instance, a bubble located above the x-axis 
experiences an upward push away from the axis, resulting in an increase in @; on the 
other hand, this upward force will push a bubble located below the x-axis toward a 
smaller @. 

In figure 2, we plot the function F versus @ with k as a parameter. The behaviour 
of the function Y with respect to @ is depicted in figure 3. It should be observed from 
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FIGURE 3. The function 3 (a) with k = 0.25. The symbol denotes the boundary of a cat’s eye. 

these figures that if a particle makes one complete loop along a closed streamline, 
9 (@) always has a non-zero contribution to the change in the ‘particle path function’ 
but the net contribution from 3(@) is always zero. It then follows from (3.27) that 
a particle with a mass density different from the fluid cannot stay in motion along 
a closed trajectory. This conclusion is consistent with the asymptotic analyses of 
Manton (1974) and Nielsen (1984). Having calculated the functions 9 (@) and Y (@), 
we are now in the position to examine some interesting aspects of particle motion in 
the Stuart vortex flow. First, let us define the function 

2 = [-F (@) + ~3 (@)I sign (:& - I) (3.38) 

so that 
(3.39) 

Now, we can examine the dynamics of heavy particles and buoyant particles. We will 
do this separately. 

A@ = y 1 : E  - 11 2. 

3.1. Heavy particles 
For heavy particles, i.e. E < 2/3, the behaviour of the function 2 is as sketched 
in figure 4. Notice that there are two equilibrium points (such that A @  = 0). The 
first one, @ = Yo, is the centre of a vortex, and is clearly seen to be unstable. The 
second one, @ = Ye, is stable. This stable equilibrium point corresponds to particle 
suspension in an open periodic trajectory located above the vortices. In figure 5, the 
equilibrium stream function Ye is plotted as a function of B with k being a parameter. 
For a fixed value of k, observe from figure 5 that as B increases, the stable particle 
trajectory shifts down toward the x-axis, since Ye decreases in response to an increase 
in B. Finally, if B is increased to the critical value of 2F (Y,)/27c, then Ye coincides 
with Y, and no particles can be suspended any longer so that all settle under the 
pull of gravity. In figure 6, this threshold value of B for the existence of particle 
suspensions is plotted as a function of k. As expected, it increases with k. 

The suspension of heavy particles above the Stuart vortices has been observed in 
the numerical study of Gaiian-Calvo & Lasheras (1991). In fact, our observation 
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FIGURE 5. The equilibrium stream function Ye as a function of B with k being a parameter. The 
symbol corresponds to the boundary of a cat's eye, so that Ye = Y,, and B = 9 (Y,,)/2n. 

here of particle trajectories being shifted down toward the x-axis as B increases is 
consistent with their findings. However, our approximate analysis based on dominant 
viscous drag cannot predict the existence of the quasi-periodic and chaotic trajectories 
observed in their study. This is so because the assumption of small y effectively reduces 
the four-dimensional dynamical system of (2.10)-(2.13) to that of two dimensions 
given by (3.23). Furthermore, this reduced dynamical system is autonomous, and 
chaos is thus non-existent. 

As can be seen from figure 4, a particle initially moving above the trajectory 
associated with the equilibrium point <p = Ye will asymptotically converge to this 
stable trajectory. The same outcome can also be easily seen for a particle initially 
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suspension of 

located between the asymptotic trajectory and the separatrix. For particles moving 
very near the separatrix, either inside or outside a cat’s eye, a simple map can be 
derived from (3.27). In this case, we first note that 9 (@) = Pm, where 9, is equal 
to 9 (Ycr), and 3 (@) = 2nsign (y). Then, (3.27) reduces to 

(3.40) 

where ej is the ‘particle path function’ at the beginning of a period, and @j+l is 
equal to @ evaluated at the end of that period (or the beginning of the next period). 
Introducing the rescaled variable 

(3.41) 

which has been stretched with the factor of 1/ (1  - 5 ~ )  y ,  into (3.40), we then obtain 
the following map: 

$ j + ~  = 6j  + [Fcr - 2nB sign ( y ) ]  . (3.42) 
It should be noted that the & associated with a particle outside the cat’s eyes is 
positive, while & takes on a negative value if the particle is moving inside a cat’s eye. 

In figures 7 (a), 7 (b) and 7 (c), the linear map given by (3.42) is shown for the case 
of 271B < gCr. In this case, there exists a stable equilibrium point Ye satisfying the 
equation 

9 (Ye) = 2nB (3.43) 
(see figure 4). All particles initially moving above the Stuart vortices will asymptot- 
ically converge to the stable trajectory associated with Ye. In fact, as can be seen 
from figures 7(a), 7 ( b )  and 7(c), even particles initially moving inside a cat’s eye 
will converge to this asymptotic path, provided they are located above the x-axis 
and sufficiently close to the separatrix, i.e. 6 > & = 2nB - Fcr. As an illustration, 
consider a particle initially inside a cat’s eye and represented by point 1 in figure 7 (a). 
Since the effect of gravity, which tends to pull the particle downward, is not strong 
enough, after one period T the particle ends up at position 2 outside the separatrix. 
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FIGURE 7. The maps for the motion of a heavy particle in the vicinity of the boundary of a cat’s 
eye, equation (3.42). Here, 2xB < Fm. For clarity, each map is accompanied by an insert consisting 
of the cat’s eye and a sketch for the corresponding motion in the physical space. 

After this, the particle asymptotically converges to the stable trajectory given by the 
equilibrium point Ye. However, if initially the particle is sufficiently far away from the 
separatrix, it may escape the cat’s eye from below and eventually settle to y = -00, 

as is clearly shown by the successive positions a, b, and c in figure 7 (b). For particles 
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F~GURE 8. The maps for a heavy particle, equation (3.42), with 2nB > .fFm. 

initially moving inside a cat’s eye and below the x-axis, they either escape the cat’s 
eye from above and converge to the asymptotic trajectory given by Ye, or fall out of 
the cat’s eye from below and eventually settle to y = -co, depending on their initial 
b. As illustrated by the p-q-r sequence of locations in figure 7(c), particles initially 
in the range of b N  < 6 < bM, where bM = - ( 9 c r  + 2nB) and b N  = -2FCr, escape 
the cat’s eye from above after making one complete loop. If their initial & is greater 
than bM, they are too close to the separatrix and, at the end of the period, fall out 
of the cat’s eye from below. Finally, if their initial 8 is smaller than aN, they will 
still be moving inside the cat’s eye after making one complete loop; eventually, they 
either converge to the asymptotic trajectory located above the cat’s eye or settle to 
y = -00, depending on the initial values of b. 

In the case of 2nB > %cr, the map given by (3.42) is shown in figures 8 (a) and 8 (b).  
In this case, the gravitational effect is too strong for any particle suspension to exist, 
and all particles settle to y = -a. The sequence of positions 1-2-3 illustrates how a 
particle enters a cat’s eye from above and ecapes from below, while the sequence of 
a-b-c shows the escape of a particle initially inside a cat’s eye. 

3.2. Buoyant particles 
For buoyant particles, E > 2/3, and the function %(@) is simply the negative of 
the corresponding % for heavy particles [see (3.38)]. From figure 4, we see that 
there are also two equilibrium points (or streamlines) for buoyant particles: @ = Ye 
and @ = Yo. The first one is unstable. The second one, which in the leading-order 
approximation is the centre of a vortex, is stable. A consequence of the existence 
of stable equilibrium points is that depending on their initial position and velocity, 
buoyant particles may be trapped inside the vortices and coalesce at the equilibrium 
points. However, it is clear that particles released above and sufficiently far away from 
the vortices will not be trapped; instead, they will escape to y = 00. If the particles 
are released above but close to the cat’s eyes, they may be captured by the vortices, as 
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FIGURE 9. The maps for a buoyant particle, equation (3.44), with 27cB < Fcr. 

will be seen later. For particles released below the cat’s eyes, their evolution dynamics 
consist of convection by the bulk flow and the vertical rise due to buoyancy force, 
so that they will eventually enter the vortices. What happens after a particle enters 
a cat’s eye: will it remain trapped there, or will it escape from captivity? To answer 
this question, we need to derive a map similar to that given in (3.42). 

For buoyant particles moving very close to the separatrix of the cat’s eyes, the 
counterpart of (3.42) is the map 

5j+, = Zjj + [--5cr + 2 n ~  sign (y)] , (3.44) 

where 8i is defined by 

(3.45) 

Note that by using the definition given by (3.45) instead of (3.41), we have preserved 
the convention that & is positive for a particle outside the separatrix and negative if 
the particle is moving inside a cat’s eye. 

In figures 9 (a) and 9 (b),  we show the maps given in (3.44) for the case of 2nB < Fcr. 
As can be seen from figure 4, there exists an unstable equilibrium point Ye satisfying 
equation (3.43). All particles moving in the upper half-space with initial ‘particle path 
functions’ greater than Ye will eventually escape to y = co. On the other hand, if 
initially @ < Ye, a particle will gradually approach and enter a cat’s eye from above. 
As is evidently illustrated by the steps 1-2-3 in figure 9 (a), once a buoyant particle 
enters a cat’s eye from above, it will remain trapped there, spiralling toward the 
stable equilibrium point located inside the vortex. For particles entering a cat’s eye 
from below, they experience the same outcome, as illustrated by the steps a-b-c in 
figure 9(b). 

When 2nB > Fcr, the effect of buoyancy is strong enough so that all particles 



1 -kES 

Dynamics of buoyant and heavy particles 

rrj+ I 

co a 

689 

q+ I 

FIGURE 10. The maps for a buoyant particle, equation (3.44), with 2nB > FCr. 

initially moving above the vortices will escape to y = 00. Particles entering a cat’s eye 
from below may remain trapped inside the vortex, provided they move sufficiently 
quickly away from the separatrix once they enter the cat’s eye; however, if they stay 
sufficiently close to the separatrix after entering, they may escape from the vortex, 
eventually moving to y = 00. These two scenarios for particles entering a cat’s eye 
from below are illustrated in figures 10(a) and lO(b).  Observe that for a particle to 
enter a cat’s eye and escape, & < &a < Fcr + 2nB, where & = 2FCr. For a particle 
to enter a cat’s eye from below and remain trapped there, 0 < < 6‘. Assuming 
a Stuart vortex flow with a uniform/continuous distribution of buoyant particles, we 
can, using figures 10 (a) and 10(b), estimate the fraction of the particles which enter a 
cat’s eye from below and remain trapped by the vortex. In fact, we can easily derive 
a formula for the trapped fraction of the entering particles, fr, as 

(3.46) 

4. Equilibrium points 
From the analysis of dominant viscous drag in the last section, we see that buoyant 

particles may be trapped by a vortex and spiral toward the central region, and that 
heavy particles always recede from the centre of the vortex. In this section, we shall 
attempt to see if these phenomena of entrapment/non-entrapment of buoyant/heavy 
particles still persist in the more general cases where the viscous drag is not necessarily 
the dominant force. Thus, we now relax the condition of A >> 1, and perform 
a numerical study of the equilibrium point(s) of the dynamical system given by 
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(2.10)-(2.13). First, we write 
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dx 
- = F ,  (x,y, Vx, V y )  = Vx,  
dt 

(4.4) -- '" - F4 (x, y, Vx, V y )  = ; E U .  VU, + (uY - V y )  Afd + (;& - 1) B. 
dt 

Then, the equilibrium point is given by (x, y, Vx, Vy)equi = (X,g,O, 0), where ( j z - ,  J )  
satisfies the simultaneous equations 

That is, ( J i , J )  is given by the intersection(s) of the two curves f 3  (x, y) = 0 and 
f4  (x, y) = 0 in the (x, y)-plane. From the theory of dynamical systems, it is well known 
that the equilibrium point (X, J ,  0, 0) is asymptotically stable if all the eigenvalues of 
the Jacobian matrix associated with the system of (4.1)-(4.4) have negative real parts. 
For simplicity, we will assume that fd  is a constant when we take the derivatives of 
F3 and F4. Under this simplification, we then obtain the characteristic equation for 
the eigenvalue < as 

where f d  and the derivatives of f 3  and f4  are evaluated at the equilibrium point. The 
solutions of (4.6) is given by 

where 

In the following discussion, we use formula (4.7) to determine the stability of the fixed 
points. 

We begin with buoyant particles. Figure 11 is an illustration of the case in which 
B varies while the other four parameters are kept constant. For this particular set 
of the four parameters k,  Re, A, and E, there exist two equilibrium points for each 
B < 6.484: the one to the left is unstable while the right one is stable. Throughout 
this paper, we follow the convention of representing stable equilibrium points with 
solid lines and designating unstable fixed points with dashed lines. That only one 
of the two fixed points is stable is consistent with our numerical simulations of the 
motion of buoyant particles. Here, it is found that all particles which do not escape 
to y = 00 are trapped by the vortices at a single point inside each vortex. Returning 
to figure 11, when B = 0, the stable equilibrium point is located at (jz- = 0 , j  = 0) 
and the unstable fixed point at ( j i :  = -n,J = 0). As B increases, the two equilibrium 
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RGURE 12. Loci of the equilibrium points of the dynamical system of (2.10)-(2.13) generated by 
varying A while keeping the other parameters fixed at k = 0.25, Re = 100.0, B = 5.0, and E = 1.0. 

points become closer until they collide with each other when B reaches the value of 
6.484. Further increase in B results in the disappearance of the equilibrium points. 
Physically, this means that the buoyancy forces acting on the particles are now so 
strong that the vortices can no longer capture any particle. In the terminology of 
dynamical systems theory, the equilibrium points of figure 11 undergo a saddle-node 
bifurcation at B = 6.484: for B c 6.484 there are two equilibrium points, while no 
fixed point exists for B > 6.484. 

In figure 12, we vary the parameter A while holding the other four constant. For 
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FIGURE 13. The equilibrium points of the dynamical system of (2.10)-(2.13) for heavy and buoyant 
particles. Here, k = 0.25, Re = 100.0, A = 5.0, B = 5.0 while E varies from E = 0.236 to E = 1.099. 

this particular choice of fixed k, Re, B, and E ,  the equilibrium points undergo a 
saddle-node bifurcation at A = 3.8467. For all values of A smaller than 3.8467, the 
viscous drag on the particles is not large enough to counteract the buoyancy force, 
and all particles escape to y = co. When A is greater than the bifurcation value of 
3.8467, there exists a stable equilibrium point (in addition to an unstable fixed point) 
inside each vortex, and all particles captured by the vortex eventually converge to 
this equilibrium point. As A increases, i.e. as the viscous drag force becomes more 
dominant, the stable and unstable fixed points move toward the centre of the vortex 
and the tip of the cat’s eye, respectively, where the fluid velocity is zero. Note that 
the movement of the stable equilibrium point toward the vortex centre as A increases 
is consistent with the analysis based on dominant viscous drag forces carried out 
in 53, where the vortex centre becomes the stable equilibrium point in the limit of 
A 4 oc). 

Figure 13 depicts the evolution of the equilibrium points as the density ratio is 
varied, covering both heavy and buoyant particles. For the four constant parameters 
k,  Re, A, and B chosen here, no equilibrium point exists for E < 0.2358. Apparently, 
the particles are so heavy that gravity cannot be balanced out by the other forces 
acting on the particles. When E is increased beyond the value of 0.2358, two 
equilibrium points appear in the lower-right quadrant of a cat’s eye for each E < 2/3. 
However, both of these fixed points are unstable, in consistence with the analysis 
of $3, which predicts that heavy particles can be suspended only in motion along a 
periodic open trajectory located above the vortices. When E is increased to the value 
of 2/3, the left branch of the locus reaches the vortex centre and the equilibrium 
point becomes stable; on the other hand, the right branch reaches the right-hand 
tip of the cat’s eye, but no change in stability ever takes place. When E is increased 
further, we enter the range of buoyant particles, and the left branch becomes a 
stable locus while the right branch continues as the locus of unstable equilibrium 
points, starting at the left-hand tip of the cat’s eye. Finally, when E reaches the value 
of 1.099, the two loci collide with each other. Further increase in E results in the 
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B.  The three parameters k,  Re, and A are kept constant. 
The evolution of the loci for buoyant particles in figure 13 in response to a decrease in 

disappearance of the equilibrium points, corresponding to the situation of no particle 
entrapment. 

In figure 14, we show how the two loci for buoyant particles in figure 13 evolve in 
response to changes in the gravity parameter B (while k, Re, and A are kept constant). 
As B decreases from the value of 5.0, the bifurcation value of E increases from 1.099, 
signifying that particles which were previously too light to be captured by the vortices 
may now be trapped. When B decreases to the value of 1.637, the bifurcation value 
reaches the bubble limit of E = 2. Thus, for B < 1.637, the whole range of particles, 
from neutrally buoyant particles to bubbles, can be suspended in the flow, held in 
captivity by the stable equilibrium points. Note that for each B < 1.637, the stable 
and unstable loci of equilibrium points do not collide at a bifurcation point; instead, 
they form two distinct branches, each covering the whole range of 2/3 < E < 2. This 
is clearly illustrated by the case of B = 1.0 in the figure. 

To conclude our discussion on the equilibrium points, let us summarize the main 
points of this section. When the gravitational force is sufficiently small, there exists a 
stable equilibrium point for buoyant particles inside a Stuart vortex so that they may 
remain at rest there; on the other hand, the equilibrium point becomes unstable in 
the case of heavy particles and, consequently, they always recede away from it. That 
the equilibium point is stable for buoyant particles but unstable for heavy particles is 
always true, regardless of the strength of the viscous drag, and seems to be a general 
feature of particle motion in vortical flows. In particular, it has also been observed 
in Langmuir cellular flows (Maxey 1987; Crisanti et a2. 1990) and in solid-rotation 
vortices (Nielsen 1984). 

5. Results of numerical simulations 
In this section, we discuss the results obtained by integrating numerically the 

dynamical system of (2.10)-(2.13). Our main objective here is to ascertain the 
accuracy of the asymptotic model discussed in $3. To this end, we will compare its 
predictions with the results of numerical integration. In this section, we will also 
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FIGURE 15. Asymptotic solutions of the dynamical system of (2.10)-(2.13), along which heavy 
particles which remain suspended at large times move. The parameters are: k = 0.25, Re = 50.0, 
A = 50.0, E = 0.05, and (a) B = 0.01; (b)  B = 0.05. 

investigate the dependence on the five parameters k, Re, A, B ,  and E of the dynamics 
of particles in Stuart vortex flows when the viscous drag is not necessarily dominant. 
In this case, we will focus on buoyant particles only, since the dynamics of heavy 
particles have been studied extensively (Gaiih-Calvo & Lasheras 1991; Tio et al. 
1993~). 

For the purpose of accurate integration, we have chosen the fourth-order Rung+ 
Kutta scheme with a time step of 0.01. The accuracy of this time step is examined by 
integrating the system of (2.10)-(2.13) in several test cases; in particular, we are able 
to obtain the open and closed streamlines of the flow field. For the initial conditions, 
we choose the initial velocity of the particles to be that of the fluid elements at the 
initial position of the particles. Unless stated otherwise, this is the initial condition 
used in our computations. 

We begin with heavy particles. Figures 15(a) and 15(b) show the asymptotic 
solution (trajectory) of the dynamical system of (2.10)-(2.13), to which the trajectories 
of all particles which remain suspended in the flow converge. Figure 15(a) is a 
snapshot at large time of the position of 1235 particles moving along the asymptotic 
trajectory while there are 1103 particles occupying the segment of the trajectory shown 
in figure 15(b). In both cases, the trajectories are periodic, the period being equal 
to 27c. Note that we have selected a fairly large value for the parameter A, so that 
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FIGURE 16. Regions of entrapment/non-entrapment of buoyant particles in the subsets of the 
parametric space with (a) k = 0.25, Re = 100.0, E = 1.0; (b) k = 0.25, Re = 300.0, E = 1.0; (c) 
k = 0.25, Re = 300.0, 8 = 1.5; (d)  k = 0.50, Re = 300.0, E = 1.5. 

comparison can be made with the analysis of $3, which is based on the assumption 
of dominant viscous drag forces. Also, the gravity parameter has been chosen to be 
B < F (Ycr)/27c w 0.080. We recall from the discussion in $3 that for suspension of 
heavy particles to exist, it is required that B < F(Ycr ) /2n  (see figures 5 and 6). In 
fact, in a separate simulation with B = 0.1 and the other four parameters identical to 
those of figures 15 (a) and 15 (b), it is observed that all particles settle toward y = -03. 

Also, observe from figures 15 (a) and 15 (b) that an increase in the parameter B results 
in a downward shift of the asymptotic trajectory, in accordance with the prediction 
of $3 (see figure 5). Quantitatively, the numerical results and analytical predictions 
are also in good agreement. For example, the ‘particle path function’ of the particles 
shown in figure 15 (a) yields an average value of Gave = 0.958 while the prediction of 
$3 (see figure 5) gives a value of ‘Ye = 0.957 for the equilibrium stream function. For 
the particles shown in figure 15 (b),  0.319 while the calculation of figure 5 gives 
a value of Ye = 0.318. For a more detailed discussion on heavy particles, the reader 
is referred to the papers of Gaiian-Calvo & Lasheras (1991) and Ti0 et al. (1993~). 
In the remaining part of this section, we will focus our attention on buoyant particles 
only. 

Depending on the values of the five parameters k,  Re, A, B ,  and E, the motion 
of buoyant particles in the Stuart vortex flow can be broadly classified into two 
scenarios. In the first scenario, some particles are captured by the vortices and remain 
trapped at the stable equilibrium points while the others escape to y = 00. Whether 
a particle is trapped or escapes to y = 00 depends on the initial position and velocity 
of the particle. In the second scenario, not a single particle is trapped by the vortices. 
Instead, all particles escape to y = 03. 

Figure 16 shows the regions of entrapment/non-entrapment of buoyant particles in 
the subsets (with fixed k, Re, and E )  of the parametric space. For each of the four cases 
represented by (a), (b), (c), and (d) ,  the corresponding curve denotes the boundary 
between the regions of entrapment and non-entrapment of buoyant particles. Let us 
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begin with case (a). For a non-zero value of A, say 5.0, and a sufficiently small B, 
particles which do not escape to y = 00 are trapped by the vortices. Furthermore, 
all the particles captured by a vortex asymptotically converge to a single point inside 
the vortex, and remain at rest there indefinitely. As B increases, the other four 
parameters remaining fixed, fewer /and fewer particles are captured by the vortices. 
Finally, when B reaches the threshold value given by the solid curve (a), which is 
about 6.5 for A = 5.0, further increase in its value results in the disappearance of 
particle entrapment. Note that this threshold value corresponds to the bifurcation 
point in figure 11, and the disappearance of particle entrapment is due to the non- 
existence of the equilibrium points. On the other hand, the disappearance of the 
asymptotic convergence of particles to fixed points when we go from buoyant to 
heavy particles is due to the loss of stability of the equilibrium points (see figure 13). 
To further investigate the effects of the parametric inputs, we increase the free-stream 
Reynolds number to 300.0 in case (b). This causes the increase of the threshold value 
of B for particle entrapment; apparently, the increase in Re results in a larger viscous 
drag so that it can counteract a greater value of B. When the density parameter, E ,  

is increased, the threshold value of B decreases, as can be seen by comparing cases 
(b) and (c).  This is intuitively clear since a larger E means a particle with a greater 
buoyancy and, thus, a greater chance of avoiding the captivity inside a vortex. In 
some sense, this is similar to the finding of Thomas et al. (1983). In their paper, 
it is reported that a more buoyant particle, compared to a heavier one, can come 
closer to a line vortex with a horizontal axis, and avoid being captured by the vortex. 
Moreover, the entrapment width of the line vortex increases with the vortex strength 
(Thomas et al. 1983, 1984). This point is also consistent with the present study, as 
can be seen by comparing cases (c) and (d). Here, the strength of the Stuart vortices 
increases with k, and an increase in the parameter k results in the increase of the 
threshold value of B for particle entrapment. Finally, we point out that entrapment 
diagrams similar to figure 16 are also obtainable for bubbles ( E  = 2.0) using the 
correlation proposed by Oliver & Chung (1987) for the drag coefficient fd (Tio et al. 
1993 b) . 

To test the predictions of the asymptotic model of §3 for buoyant particles, we 
release 51 x 51 particles uniformly over a square of sides equal to 27c and co-centred 
with a cat’s eye, and follow the evolution of the particle cloud. The asterisks in 
figures 17(a), 17 (b) and 17 (c) denote the initial position of those particles which are 
captured by the vortices and end up at the equilibrium points. We observe from 
figure 17(a) that all particles initially released below the x-axis end up in captivity, 
and that some particles released above the cat’s eyes are also finally trapped inside 
the vortices. With B = 0.02 < T C r / 2 n  GZ 0.080, this agrees with the predictions of $3. 
In figure 17 (b), the gravity parameter B is increased beyond FC,/2n. In agreement 
with the analysis of $3, it is seen that all particles initially released above the cat’s 
eyes escape to y = co. Furthermore, some of the particles which enter a cat’s eye 
from below are able to escape from it. When E is increased, corresponding to lighter 
particles, the region of attraction (i.e. the region composed of the initial positions of 
particles which are eventually trapped by the vortices at their respective equilibirum 
points) inside a cat’s eye shrinks, as is seen from the comparison of figures 17 (b)  and 
17(c). This is similar to the observation of Thomas et al. (1983) that the entrapment 
width of a line vortex with a horizontal axis is shorter for lighter buoyant particles. 
While the shrinking of the region of attraction inside a cat’s eye in reponse to an 
increase in E is intuitively clear, it is interesting to examine it from the point of view 
of $3. Observe from figures 10 (a) and 10 (b) that for a particle initially inside a cat’s 
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Since Fcr - 27cB < 0, an increase in E results in a decrease of Qinit, i.e. the shrinking 
of the region of attraction. 

K.-K. Tio, A. Liiian, J .  C .  Lasheras and A. M .  Gaiih-Calm 

6. Concluding remarks 
In this paper, we study the dynamics of heavy and buoyant particles in a periodic 

Stuart vortex flow. Based on the assumption of dominant viscous drag forces, we 
develop an asymptotic model so that we can study some aspects of particle motion 
analytically. In particular, it is shown that heavy and buoyant particles can be 
suspended against gravity in the flow, but by completely different mechanisms. For 
buoyant particles, suspension takes place at the stable equilibrium points, where 
particles spiral into and then remain at rest. On the other hand, heavy particles 
are suspended in motion along a single open periodic trajectory located above the 
cat’s eyes. We point out here that heavy particles may also be suspended along 
quasi-periodic and chaotic trajectories located above and below the vortices, and that 
suspension of particles slightly heavier than the fluid in closed orbits is also possible 
(Tio et al. 1993~). However, these suspension modes of heavy particles require that 
the other forces acting on the particles are not diminishingly small compared to the 
viscous drag. 

To test the validity of the asymptotic model, we first study the equilibrium points 
of the dynamical system (2.10)-(2.13). We find that when the equilibrium points exist, 
they are always unstable for heavy particles but there is one which is always stable 
for buoyant particles. This finding is consistent with the two different suspension 
mechanisms for buoyant and heavy particles predicted by the asymptotic model. 
For further tests of the asymptotic model, we then carry out a computational study 
by integrating numerically the equations of motion of the particles. Generally, the 
computational results are in agreement with the analytical predictions based on the 
assumption of dominant viscous drag. 

In some cases, the Stuart vortex flow can be used as a model for the plane free 
shear layer. In fact, it has been numerically found to be a final equilibrium state 
of the two-dimensional shear layer under some restrictive conditions (Sommeria, 
Staquet & Robert 1991). Nevertheless, the Stuart vortices are, in general, only a crude 
representation of the vortical structures observed in the shear layer. Usually, these 
structures evolve in time and space, and interact with each other. Their evolution and 
interaction will certainly alter the structure of the asymptotic trajectory predicted in 
53 for heavy particles. However, the entrapment of buoyant particles in the central 
region of the vortices will persist since the underlying mechanism is, basically, local 
to the individual vortices. 
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